
Mercurial’s Query Languages

Martin Geisler
〈mg@aragost.com〉

Gearconf, Düsseldorf
June 10th, 2011

aragost Trifork

Outline

Introduction

Revision Sets
Predicates
Functions
Operators

File Sets
Working Copy Status and Path
File Content

Conclusion

2 / 32

aragost Trifork

Outline

Introduction

Revision Sets
Predicates
Functions
Operators

File Sets
Working Copy Status and Path
File Content

Conclusion

3 / 32

aragost Trifork

Confusing Histories
Big projects can give rise to a branchy history:

I several concurrent branches
I many developers pushing changes

Mercurial help you to cut away the unnecessary fluff:

I Revision sets selects revisions (Mercurial 1.6):
$ hg log -r "branch(’stable’) and user(’Martin’)"

Can be used in all places where Mercurial expects revisions
I File sets selects files in revisions (Mercurial 1.9 or 2.0):

$ hg revert "set:added() and size(’>20MB’)"

Can be used in all places where Mercurial expects file names

4 / 32

aragost Trifork

Confusing Histories
Big projects can give rise to a branchy history:

I several concurrent branches
I many developers pushing changes

Mercurial help you to cut away the unnecessary fluff:
I Revision sets selects revisions (Mercurial 1.6):

$ hg log -r "branch(’stable’) and user(’Martin’)"

Can be used in all places where Mercurial expects revisions

I File sets selects files in revisions (Mercurial 1.9 or 2.0):
$ hg revert "set:added() and size(’>20MB’)"

Can be used in all places where Mercurial expects file names

4 / 32

aragost Trifork

Confusing Histories
Big projects can give rise to a branchy history:

I several concurrent branches
I many developers pushing changes

Mercurial help you to cut away the unnecessary fluff:
I Revision sets selects revisions (Mercurial 1.6):

$ hg log -r "branch(’stable’) and user(’Martin’)"

Can be used in all places where Mercurial expects revisions
I File sets selects files in revisions (Mercurial 1.9 or 2.0):

$ hg revert "set:added() and size(’>20MB’)"

Can be used in all places where Mercurial expects file names

4 / 32

aragost Trifork

Flexibility
The query languages lets you solve hard problems:

I Imagine you have a dirty working copy:
$ hg status
M index.html
A logo.png

But how can you see the diff of index.html only?

I Easy! You use your nifty Unix shell:
$ hg diff $(hg status --no-status --modified)

I With file sets you can do
$ hg diff "set:modified()"

and it will work on all platforms

5 / 32

aragost Trifork

Flexibility
The query languages lets you solve hard problems:

I Imagine you have a dirty working copy:
$ hg status
M index.html
A logo.png

But how can you see the diff of index.html only?
I Easy! You use your nifty Unix shell:

$ hg diff $(hg status --no-status --modified)

I With file sets you can do
$ hg diff "set:modified()"

and it will work on all platforms

5 / 32

aragost Trifork

Flexibility
The query languages lets you solve hard problems:

I Imagine you have a dirty working copy:
$ hg status
M index.html
A logo.png

But how can you see the diff of index.html only?
I Easy! You use your nifty Unix shell:

$ hg diff $(hg status --no-status --modified)

I With file sets you can do
$ hg diff "set:modified()"

and it will work on all platforms

5 / 32

aragost Trifork

Implementation
When a revision set is evaluated it is:

tokenized: split input into operators, symbols, strings

parsed: build parse tree based on operator precedence
optimized: reorders parse tree to evaluate cheap parts first:

contains("README") and 1.0::1.5

starts with a manifest-based query — reorder to:
1.0::1.5 and contains("README")

executed: go through tree and evaluate predicates

6 / 32

aragost Trifork

Implementation
When a revision set is evaluated it is:

tokenized: split input into operators, symbols, strings
parsed: build parse tree based on operator precedence

optimized: reorders parse tree to evaluate cheap parts first:
contains("README") and 1.0::1.5

starts with a manifest-based query — reorder to:
1.0::1.5 and contains("README")

executed: go through tree and evaluate predicates

6 / 32

aragost Trifork

Implementation
When a revision set is evaluated it is:

tokenized: split input into operators, symbols, strings
parsed: build parse tree based on operator precedence

optimized: reorders parse tree to evaluate cheap parts first:
contains("README") and 1.0::1.5

starts with a manifest-based query — reorder to:
1.0::1.5 and contains("README")

executed: go through tree and evaluate predicates

6 / 32

aragost Trifork

Implementation
When a revision set is evaluated it is:

tokenized: split input into operators, symbols, strings
parsed: build parse tree based on operator precedence

optimized: reorders parse tree to evaluate cheap parts first:
contains("README") and 1.0::1.5

starts with a manifest-based query — reorder to:
1.0::1.5 and contains("README")

executed: go through tree and evaluate predicates

6 / 32

aragost Trifork

Quoting
How to handle special characters:

I You will need to quote your queries on the command line:
$ hg log -r parents()
zsh: parse error near ‘()’

I Strings in queries can be in single- or double-quotes:
$ hg log -r "user(’Martin’)"

I Escape characters are supported
$ hg log -r "keyword(’first line\nsecond line’)"

I Use a raw string to disable the escape characters:
$ hg log -r "grep(r’Bug\s*\d+’)"

7 / 32

aragost Trifork

Quoting
How to handle special characters:

I You will need to quote your queries on the command line:
$ hg log -r parents()
zsh: parse error near ‘()’

I Strings in queries can be in single- or double-quotes:
$ hg log -r "user(’Martin’)"

I Escape characters are supported
$ hg log -r "keyword(’first line\nsecond line’)"

I Use a raw string to disable the escape characters:
$ hg log -r "grep(r’Bug\s*\d+’)"

7 / 32

aragost Trifork

Quoting
How to handle special characters:

I You will need to quote your queries on the command line:
$ hg log -r parents()
zsh: parse error near ‘()’

I Strings in queries can be in single- or double-quotes:
$ hg log -r "user(’Martin’)"

I Escape characters are supported
$ hg log -r "keyword(’first line\nsecond line’)"

I Use a raw string to disable the escape characters:
$ hg log -r "grep(r’Bug\s*\d+’)"

7 / 32

aragost Trifork

Quoting
How to handle special characters:

I You will need to quote your queries on the command line:
$ hg log -r parents()
zsh: parse error near ‘()’

I Strings in queries can be in single- or double-quotes:
$ hg log -r "user(’Martin’)"

I Escape characters are supported
$ hg log -r "keyword(’first line\nsecond line’)"

I Use a raw string to disable the escape characters:
$ hg log -r "grep(r’Bug\s*\d+’)"

7 / 32

aragost Trifork

Outline

Introduction

Revision Sets
Predicates
Functions
Operators

File Sets
Working Copy Status and Path
File Content

Conclusion

8 / 32

aragost Trifork

Outline

Introduction

Revision Sets
Predicates
Functions
Operators

File Sets
Working Copy Status and Path
File Content

Conclusion

9 / 32

aragost Trifork

Predicates
Predicates select changesets for inclusion in the resulting set:

I closed(), head(), merge(): simple changeset properties
I author(string), date(interval): search by user name or

by commit date
$ hg log -r "author(’Martin’) and merge()"

I grep(regex), keyword(string): search in commit
message, user name, changed file names for a regular
expression or a substring

10 / 32

aragost Trifork

Matching by Files in Changesets
Matching by how a file changed:

I adds(pattern): a file matching pattern was added
I modifies(pattern): a file matching pattern was modified
I removes(pattern): a file matching pattern was removed

I file(pattern): combination of all the above
I contains(pattern): a file matching pattern was present

11 / 32

aragost Trifork

Matching by Files in Changesets
Matching by how a file changed:

I adds(pattern): a file matching pattern was added
I modifies(pattern): a file matching pattern was modified
I removes(pattern): a file matching pattern was removed
I file(pattern): combination of all the above

I contains(pattern): a file matching pattern was present

11 / 32

aragost Trifork

Matching by Files in Changesets
Matching by how a file changed:

I adds(pattern): a file matching pattern was added
I modifies(pattern): a file matching pattern was modified
I removes(pattern): a file matching pattern was removed
I file(pattern): combination of all the above
I contains(pattern): a file matching pattern was present

11 / 32

aragost Trifork

Outline

Introduction

Revision Sets
Predicates
Functions
Operators

File Sets
Working Copy Status and Path
File Content

Conclusion

12 / 32

aragost Trifork

Following the Changeset Graph
A common task is to follow the graph from a particular changeset:

I ::set or ancestors(set): ancestors of changesets in set
I set:: or descendants(set): descendants of changesets in

set
I X::Y: a combination of the above, finding changesets between

X and Y

Changes that need to be merged into the default branch:
$ hg log -r "ancestors(stable) - ancestors(default)"
$ hg log -r "::stable - ::default"

13 / 32

aragost Trifork

Following the Changeset Graph
A common task is to follow the graph from a particular changeset:

I ::set or ancestors(set): ancestors of changesets in set
I set:: or descendants(set): descendants of changesets in

set
I X::Y: a combination of the above, finding changesets between

X and Y
Changes that need to be merged into the default branch:
$ hg log -r "ancestors(stable) - ancestors(default)"
$ hg log -r "::stable - ::default"

13 / 32

aragost Trifork

Family Relations
I ancestor(single, single): greatest common ancestor of

the two changesets. Used to find out what needs to be
merged in a merge between X and Y:
$ hg log -r "ancestor(X, Y)::Y"

I children(set), parents([set]): set of all
children/parents of set

I heads(set), roots(set): changesets from set with no
children/parents in set

14 / 32

aragost Trifork

Parents and Grand Parents
Going from a changeset to the parent changeset is easy:

I p1([set]), p2([set]): the first/second parent of
changesets in set or of the working copy if no set is given

I x^, x^2: the first/second parent of x
I x~n: the n’th first ancestor of x, x~0 is x, x~3 is x^^^

To see both sides of a merge changeset M use
$ hg diff -r "p1(M):M" && hg diff -r "p2(M):M"

or the shorter
$ hg diff -c M && hg diff -r "M^2:M"

15 / 32

aragost Trifork

The Next Push
The hg outgoing command tells what will be pushed, and so
does this function:

I outgoing([path]): changesets not in the destination
repository

It is now easy to see what you will push as a single diff:
$ hg diff -r "outgoing()"

It is also easy to reset a repository:
$ hg strip "outgoing()"

People familiar with Git will know this as
$ git reset --hard origin/master

16 / 32

aragost Trifork

The Next Push
The hg outgoing command tells what will be pushed, and so
does this function:

I outgoing([path]): changesets not in the destination
repository

It is now easy to see what you will push as a single diff:
$ hg diff -r "outgoing()"

It is also easy to reset a repository:
$ hg strip "outgoing()"

People familiar with Git will know this as
$ git reset --hard origin/master

16 / 32

aragost Trifork

The Next Push
The hg outgoing command tells what will be pushed, and so
does this function:

I outgoing([path]): changesets not in the destination
repository

It is now easy to see what you will push as a single diff:
$ hg diff -r "outgoing()"

It is also easy to reset a repository:
$ hg strip "outgoing()"

People familiar with Git will know this as
$ git reset --hard origin/master

16 / 32

aragost Trifork

Final Touches on Your Query
Trimming, cutting, manipulating the set:

I max(set), min(set): the changeset with
minimum/maximum revision number in the set

I reverse(set): the set is ordered; this reverses it
I limit(set, n), last(set, n): the first/last n changesets
I sort(set[, [-]key...]): sorting the set by revision

number, branch name, changeset message, user name, or date

17 / 32

aragost Trifork

Final Touches on Your Query
Trimming, cutting, manipulating the set:

I max(set), min(set): the changeset with
minimum/maximum revision number in the set

I reverse(set): the set is ordered; this reverses it

I limit(set, n), last(set, n): the first/last n changesets
I sort(set[, [-]key...]): sorting the set by revision

number, branch name, changeset message, user name, or date

17 / 32

aragost Trifork

Final Touches on Your Query
Trimming, cutting, manipulating the set:

I max(set), min(set): the changeset with
minimum/maximum revision number in the set

I reverse(set): the set is ordered; this reverses it
I limit(set, n), last(set, n): the first/last n changesets

I sort(set[, [-]key...]): sorting the set by revision
number, branch name, changeset message, user name, or date

17 / 32

aragost Trifork

Final Touches on Your Query
Trimming, cutting, manipulating the set:

I max(set), min(set): the changeset with
minimum/maximum revision number in the set

I reverse(set): the set is ordered; this reverses it
I limit(set, n), last(set, n): the first/last n changesets
I sort(set[, [-]key...]): sorting the set by revision

number, branch name, changeset message, user name, or date

17 / 32

aragost Trifork

Solving Ambiguities
When you do hg log -r "foo", Mercurial checks
1. is foo a bookmark?
2. is foo a tag?
3. is foo a branch name?

First match wins.

You can override this using predicates:
I bookmark([name]), tag([name]): the changeset with the

given bookmark or tag, or all bookmarked/tagged changesets
I branch(name): changesets on the given branch
I branch(set): changesets on the branches of the given set,

normally used with a single changeset:
$ hg log -r "branch(tip)"

18 / 32

aragost Trifork

Solving Ambiguities
When you do hg log -r "foo", Mercurial checks
1. is foo a bookmark?
2. is foo a tag?
3. is foo a branch name?

First match wins.
You can override this using predicates:

I bookmark([name]), tag([name]): the changeset with the
given bookmark or tag, or all bookmarked/tagged changesets

I branch(name): changesets on the given branch
I branch(set): changesets on the branches of the given set,

normally used with a single changeset:
$ hg log -r "branch(tip)"

18 / 32

aragost Trifork

Outline

Introduction

Revision Sets
Predicates
Functions
Operators

File Sets
Working Copy Status and Path
File Content

Conclusion

19 / 32

aragost Trifork

Operators
You can combine two revision sets using:

I x and y or x & y: changesets in both x and y
I x or y or x | y or x + y: changesets in either x or y
I x - y: changesets in x but not in y

20 / 32

aragost Trifork

Examples
I Heads on the current branch:

$ hg log -r "head() and branch(.)"

Closed heads:
$ hg log -r "head() and closed()"

Reopened branches:
$ hg log -r "closed() and not head()"

I Open heads on the current branch:
$ hg log -r "head() and branch(.) and not closed()"

I Bugfixes that are not in a tagged release:
$ hg log -r "keyword(bug) and not ::tagged()"

21 / 32

aragost Trifork

Outline

Introduction

Revision Sets
Predicates
Functions
Operators

File Sets
Working Copy Status and Path
File Content

Conclusion

22 / 32

aragost Trifork

Selecting Files
File sets let you:

I select files from working copy
I select files from old revisions

Hopefully part of Mercurial 1.9 (July) or 2.0 (November)

23 / 32

aragost Trifork

Outline

Introduction

Revision Sets
Predicates
Functions
Operators

File Sets
Working Copy Status and Path
File Content

Conclusion

24 / 32

aragost Trifork

Working Copy Status
The proposed predicates are:

I modified(), added(), removed(), deleted(), unknown(),
ignored(), clean(): status flags

I copied(): copied files, quite hard to extract today
I ignorable(): tracked files that would be ignored
I tracked(): all tracked files
I conflicted(): like hg resolve –list after a merge

25 / 32

aragost Trifork

Working Copy Status
The proposed predicates are:

I modified(), added(), removed(), deleted(), unknown(),
ignored(), clean(): status flags

I copied(): copied files, quite hard to extract today

I ignorable(): tracked files that would be ignored
I tracked(): all tracked files
I conflicted(): like hg resolve –list after a merge

25 / 32

aragost Trifork

Working Copy Status
The proposed predicates are:

I modified(), added(), removed(), deleted(), unknown(),
ignored(), clean(): status flags

I copied(): copied files, quite hard to extract today
I ignorable(): tracked files that would be ignored

I tracked(): all tracked files
I conflicted(): like hg resolve –list after a merge

25 / 32

aragost Trifork

Working Copy Status
The proposed predicates are:

I modified(), added(), removed(), deleted(), unknown(),
ignored(), clean(): status flags

I copied(): copied files, quite hard to extract today
I ignorable(): tracked files that would be ignored
I tracked(): all tracked files

I conflicted(): like hg resolve –list after a merge

25 / 32

aragost Trifork

Working Copy Status
The proposed predicates are:

I modified(), added(), removed(), deleted(), unknown(),
ignored(), clean(): status flags

I copied(): copied files, quite hard to extract today
I ignorable(): tracked files that would be ignored
I tracked(): all tracked files
I conflicted(): like hg resolve –list after a merge

25 / 32

aragost Trifork

Searching by Path
We can replace the find Unix command:

I glob(P) instead of find -path P
I regex(P) instead of find -regex P

Remember that this also works on old revisions:
$ hg status -r 1.0::2.0 "set:glob(src/*.h)"
A src/foo.h
M src/bar.h

This shows that foo.h is a new header file in version 2.0.

26 / 32

aragost Trifork

File Type Predicates
Other find-like predicates will be:

I executable(), symlink(): file type
I perm(), owner(): file permissions
I date(), size(): other file meta data

27 / 32

aragost Trifork

Outline

Introduction

Revision Sets
Predicates
Functions
Operators

File Sets
Working Copy Status and Path
File Content

Conclusion

28 / 32

aragost Trifork

Looking Into Files
Matching files by content:

I grep(): like the Unix grep we all love

I contains(): simple sub-string matching
I binary(), text(): does file contain a NUL byte?

$ hg add "set:unknown() and not binary()"

I decodes(): check if file can be decoded with the given
character set, such as UTF-8, UTF-16, . . .
Lets you find mistakes:
$ hg status --all "set:glob(’**.py’) and not decodes(’UTF-8’)"
C src/foo.py

I eol(): line-ending type, Unix (LF) or DOS (CRLF)

29 / 32

aragost Trifork

Looking Into Files
Matching files by content:

I grep(): like the Unix grep we all love
I contains(): simple sub-string matching

I binary(), text(): does file contain a NUL byte?
$ hg add "set:unknown() and not binary()"

I decodes(): check if file can be decoded with the given
character set, such as UTF-8, UTF-16, . . .
Lets you find mistakes:
$ hg status --all "set:glob(’**.py’) and not decodes(’UTF-8’)"
C src/foo.py

I eol(): line-ending type, Unix (LF) or DOS (CRLF)

29 / 32

aragost Trifork

Looking Into Files
Matching files by content:

I grep(): like the Unix grep we all love
I contains(): simple sub-string matching
I binary(), text(): does file contain a NUL byte?

$ hg add "set:unknown() and not binary()"

I decodes(): check if file can be decoded with the given
character set, such as UTF-8, UTF-16, . . .
Lets you find mistakes:
$ hg status --all "set:glob(’**.py’) and not decodes(’UTF-8’)"
C src/foo.py

I eol(): line-ending type, Unix (LF) or DOS (CRLF)

29 / 32

aragost Trifork

Looking Into Files
Matching files by content:

I grep(): like the Unix grep we all love
I contains(): simple sub-string matching
I binary(), text(): does file contain a NUL byte?

$ hg add "set:unknown() and not binary()"

I decodes(): check if file can be decoded with the given
character set, such as UTF-8, UTF-16, . . .
Lets you find mistakes:
$ hg status --all "set:glob(’**.py’) and not decodes(’UTF-8’)"
C src/foo.py

I eol(): line-ending type, Unix (LF) or DOS (CRLF)

29 / 32

aragost Trifork

Looking Into Files
Matching files by content:

I grep(): like the Unix grep we all love
I contains(): simple sub-string matching
I binary(), text(): does file contain a NUL byte?

$ hg add "set:unknown() and not binary()"

I decodes(): check if file can be decoded with the given
character set, such as UTF-8, UTF-16, . . .
Lets you find mistakes:
$ hg status --all "set:glob(’**.py’) and not decodes(’UTF-8’)"
C src/foo.py

I eol(): line-ending type, Unix (LF) or DOS (CRLF)

29 / 32

aragost Trifork

Adding New Predicates
The feature will be extensible, some possible future extensions:

I magic(): recognize files based on file content, like the file
program in Unix

I locked(): files locked for exclusive access by my lock
extension

30 / 32

aragost Trifork

Outline

Introduction

Revision Sets
Predicates
Functions
Operators

File Sets
Working Copy Status and Path
File Content

Conclusion

31 / 32

aragost Trifork

Conclusion
In short:

I revision sets lets you zoom in on the right part of the history
I file sets will let you pick out the relevant files
I both mechanisms are completely general

Please get in touch if you have more questions:
I Email: mg@aragost.com
I IRC: mg in #mercurial on irc.freenode.net

Thank you!Thank you!

32 / 32

mg@aragost.com
mg
#mercurial
irc.freenode.net

aragost Trifork

Conclusion
In short:

I revision sets lets you zoom in on the right part of the history
I file sets will let you pick out the relevant files
I both mechanisms are completely general

Please get in touch if you have more questions:
I Email: mg@aragost.com
I IRC: mg in #mercurial on irc.freenode.net

Thank you!Thank you!

32 / 32

mg@aragost.com
mg
#mercurial
irc.freenode.net

aragost Trifork

Conclusion
In short:

I revision sets lets you zoom in on the right part of the history
I file sets will let you pick out the relevant files
I both mechanisms are completely general

Please get in touch if you have more questions:
I Email: mg@aragost.com
I IRC: mg in #mercurial on irc.freenode.net

Thank you!Thank you!

32 / 32

mg@aragost.com
mg
#mercurial
irc.freenode.net

	Introduction
	Revision Sets
	Predicates
	Functions
	Operators

	File Sets
	Working Copy Status and Path
	File Content

	Conclusion

